Platonic Surfaces

نویسنده

  • Robert Brooks
چکیده

If SO is a Riemann surface with a complete metric of finite area and constant curvature −1, let SC denote the conformal compactification of SO. We show that, under the assumption that the cusps of SO are large, there is a close relationship between the hyperbolic metrics on SO and SC . We use this relationship to show that lim infk→∞ λ1(Pk) ≥ 5/36, where the Platonic surface Pk is the conformal compactification of the modular surface Sk. Mathematics Subject Classification (1991). 58G99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flat Zipper-Unfolding Pairs for Platonic Solids

We show that four of the five Platonic solids’ surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can “zipper-refold” to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat “zipper pairs.” No such zipper pair exists for a dodecahedron, whose Hamilton...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Simple Surface Singularities, their Resolutions, and Construction of K3 Surfaces

This paper describes, in detail, a process for constructing Kummer K3 surfaces, and other “generalized” Kummer K3 surfaces. In particular, we look at how some well-known geometrical objects such as the platonic solids and regular polygons can inspire the creation of singular surfaces, and we investigate the resolution of those surfaces. Furthermore, we will extend this methodology to examine th...

متن کامل

Constructing Finite Frames via Platonic Solids

Finite tight frames have many applications and some interesting physical interpretations. One of the important subjects in this area is the ways for constructing such frames. In this article we give a concrete method for constructing finite normalized frames using Platonic solids.

متن کامل

Isoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces

We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platonic graphs over the rings Zn. In the latter case we show that these graphs are generally nonRamanuj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998